# -*- coding: utf-8 -*- from __future__ import print_function import click import os import re import face_recognition.api as face_recognition import multiprocessing import itertools import sys import PIL.Image import numpy as np def scan_known_people(known_people_folder): known_names = [] known_face_encodings = [] for file in image_files_in_folder(known_people_folder): basename = os.path.splitext(os.path.basename(file))[0] img = face_recognition.load_image_file(file) encodings = face_recognition.face_encodings(img) if len(encodings) > 1: click.echo("WARNING: More than one face found in {}. Only considering the first face.".format(file)) if len(encodings) == 0: click.echo("WARNING: No faces found in {}. Ignoring file.".format(file)) else: known_names.append(basename) known_face_encodings.append(encodings[0]) return known_names, known_face_encodings def print_result(filename, name, distance, show_distance=False): if show_distance: print("{},{},{}".format(filename, name, distance)) else: print("{},{}".format(filename, name)) def test_image(image_to_check, known_names, known_face_encodings, tolerance=0.6, show_distance=False): unknown_image = face_recognition.load_image_file(image_to_check) # Scale down image if it's giant so things run a little faster if max(unknown_image.shape) > 1600: pil_img = PIL.Image.fromarray(unknown_image) pil_img.thumbnail((1600, 1600), PIL.Image.LANCZOS) unknown_image = np.array(pil_img) unknown_encodings = face_recognition.face_encodings(unknown_image) for unknown_encoding in unknown_encodings: distances = face_recognition.face_distance(known_face_encodings, unknown_encoding) result = list(distances <= tolerance) if True in result: [print_result(image_to_check, name, distance, show_distance) for is_match, name, distance in zip(result, known_names, distances) if is_match] else: print_result(image_to_check, "unknown_person", None, show_distance) if not unknown_encodings: # print out fact that no faces were found in image print_result(image_to_check, "no_persons_found", None, show_distance) def image_files_in_folder(folder): return [os.path.join(folder, f) for f in os.listdir(folder) if re.match(r'.*\.(jpg|jpeg|png)', f, flags=re.I)] def process_images_in_process_pool(images_to_check, known_names, known_face_encodings, number_of_cpus, tolerance, show_distance): if number_of_cpus == -1: processes = None else: processes = number_of_cpus # macOS will crash due to a bug in libdispatch if you don't use 'forkserver' context = multiprocessing if "forkserver" in multiprocessing.get_all_start_methods(): context = multiprocessing.get_context("forkserver") pool = context.Pool(processes=processes) function_parameters = zip( images_to_check, itertools.repeat(known_names), itertools.repeat(known_face_encodings), itertools.repeat(tolerance), itertools.repeat(show_distance) ) pool.starmap(test_image, function_parameters) @click.command() @click.argument('known_people_folder') @click.argument('image_to_check') @click.option('--cpus', default=1, help='number of CPU cores to use in parallel (can speed up processing lots of images). -1 means "use all in system"') @click.option('--tolerance', default=0.6, help='Tolerance for face comparisons. Default is 0.6. Lower this if you get multiple matches for the same person.') @click.option('--show-distance', default=False, type=bool, help='Output face distance. Useful for tweaking tolerance setting.') def main(known_people_folder, image_to_check, cpus, tolerance, show_distance): known_names, known_face_encodings = scan_known_people(known_people_folder) # Multi-core processing only supported on Python 3.4 or greater if (sys.version_info < (3, 4)) and cpus != 1: click.echo("WARNING: Multi-processing support requires Python 3.4 or greater. Falling back to single-threaded processing!") cpus = 1 if os.path.isdir(image_to_check): if cpus == 1: [test_image(image_file, known_names, known_face_encodings, tolerance, show_distance) for image_file in image_files_in_folder(image_to_check)] else: process_images_in_process_pool(image_files_in_folder(image_to_check), known_names, known_face_encodings, cpus, tolerance, show_distance) else: test_image(image_to_check, known_names, known_face_encodings, tolerance, show_distance) if __name__ == "__main__": main()