mejoras de rendimiento, correción de fallas

This commit is contained in:
cobra 2023-03-22 00:41:04 +00:00
parent a191c3b831
commit 4b551b470b
6 changed files with 489815 additions and 1405460 deletions

1194386
aliases

File diff suppressed because it is too large Load Diff

700525
names

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,6 @@ import os
import csv
import json
import time
import mailer
import sqlite3
import hashlib
import flask
@ -12,6 +11,8 @@ from flask import request
from flask import jsonify
from flask import abort
from flask_cors import CORS
#from flask_mysqldb import MySQL
import pyodbc
from fuzzywuzzy import fuzz
from multiprocessing import Process, Queue
import face_recognition
@ -41,97 +42,208 @@ import face_recognition
#phph = lambda nnmm:nnmm.replace('LL',u'Ж').replace('RR',u'Р').replace('CH',u'Ч')
#names_ph = {nm[1]:phph(nm[1]) for nm in names}
#db_cursor.close(); db_connector.close()
app = Flask(__name__,subdomain_matching=True)
app = Flask(__name__)
CORS(app)
#app.config['MYSQL_HOST'] = '45.63.49.123'
#app.config['MYSQL_USER'] = 'root'
#app.config['MYSQL_PASSWORD'] = ')(C0nd0R10101'
#app.config['MYSQL_DB'] = 'globalists'
#app.config['MYSQL_CURSORCLASS'] = 'DictCursor' #highly important, this creates a tuple of dictionaries
#mysql = MySQL(app)
connection_string_mysql = "DRIVER={/usr/local/lib/mariadb/libmaodbc.so};SERVER=localhost;PORT=3306;DATABASE=globalists;UID=root;PWD=)(C0nd0R10101"
contador_resultados = 0
#app.config['SECURITY_TOKEN_AUTHENTICATION_KEY'] = '7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT'
#print(app.config['SECURITY_TOKEN_AUTHENTICATION_HEADER'])
#print(app.config['SECURITY_TOKEN_AUTHENTICATION_KEY'])
app.config["SERVER_NAME"] = "condorgl.net"
@app.route("/")
def rootr(): return ""
@app.route("/login",subdomain="auth",methods=['POST'])
def login():
return jsonify({"success":request.form["username"] in ["aeespinosa","cobra"] and request.form["password"] in ["test"],"payload":{}})
@app.route("/resetpw",subdomain="auth",methods=['POST'])
def resetpw():
return jsonify({"success":request.form["username"] in ["aeespinosa","cobra"] and request.form["email"] in ["h@condorbs.net"],"payload":{""}})
@app.route("/",subdomain="globalists")
@app.route("/<path:wp>",subdomain="globalists")
def webapp(wp="index.html"): return app.send_static_file("globalists/"+wp+"index.html" if wp.endswith('/') else "globalists/"+wp)
@app.route("/",subdomain="mneural")
@app.route("/<path:wp>",subdomain="mneural")
def webapp2(wp="index.html"): return app.send_static_file("mneural/"+wp+"index.html" if wp.endswith('/') else "mneural/"+wp)
#app.config["SERVER_NAME"] = "localhost:2443"
#@app.route("/",subdomain="mneural")
#@app.route("/<path:wp>",subdomain="mneural")
#def webapp2(wp="index.html"): return app.send_static_file("mneural/"+wp+"index.html" if wp.endswith('/') else "mneural/"+wp)
def myFunc(e):
return e['name_similarity']
response_queue = Queue()
@app.route("/match",subdomain="api", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
@app.route("/match", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
#@auth_token_required
def match():
fields = {"name":"nombre","nationality":"pais","rfc":"rfc","status":"estatus"}
data = {field:request.args.get(field) for field in list(fields)+["similarity"]}
db_connector = pyodbc.connect(connection_string_mysql)
cur = db_connector.cursor()
cur.execute('SELECT Token FROM Token WHERE Activo = 1')
tokens_si = cur.fetchall()
lista_token = []
for t in tokens_si:
lista_token.append(t[0])
if not (request.args.get("token") and (request.args.get("name") or request.args.get("rfc"))): return {"success":False,"error":"400 Bad Request"},400
if request.method != 'GET': return {"success":False,"error":"405 Method Not Allowed"},405
if request.args.get("token") not in ["7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT","j6KbS9IVIdWReQkag3Own9XS1YGBCt4L2j070YonBV4T"]:
if(request.method != 'GET'):
cur.close()
db_connector.close()
return {"success":False,"error":"405 Method Not Allowed"},405
#if request.args.get("token") not in ["7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT","j6KbS9IVIdWReQkag3Own9XS1YGBCt4L2j070YonBV4T"]:
#if request.args.get("token") not in ["j6KbS9IVIdWReQkag3Own9XS1YGBCt4L2j070YonBV4T","CAQ37QdFa2WtSMPDjq7qPn6ovyewGhUzbB2j6se6vcC4", "Pjvu03ocfsZSY7oQRXMHl5wagGltRhMkhUj0X0SI6CHo"]:
cur2 = db_connector.cursor()
cur2.execute("SELECT ID FROM Cuenta WHERE Fecha_fin >= now() AND Token = '{}' LIMIT 1".format(request.args.get("token")))
cuenta = cur2.fetchall()
if request.args.get("token") not in lista_token:
cur.close()
cur2.close()
db_connector.close()
return {"success":False,"error":"403 Not authorized"},403
#print(data)
if not cuenta:
cur.close()
cur2.close()
db_connector.close()
return {"success":False,"error":"403 expired"},403
print(data)
if not (request.args.get("site")):
cur2.execute("SELECT ID FROM Cuenta WHERE Fecha_fin > (date(now()) + interval 1 day) AND Token = '{}' and Total_Consultas > 0 LIMIT 1".format(request.args.get("token")))
valido = cur2.fetchall()
if(valido):
cur2.execute("update Cuenta set Total_consultas = Total_consultas-1 where Token = '{}'".format(request.args.get("token")))
else:
cur.close()
db_connector.close()
return {"success":False,"error":"Limite de consultas alcanzado, contacta a soporte en helpdesk@condorbs.net"},403
db_connector.commit()
if not (request.args.get("id")):
idUsuario = 0
else:
idUsuario = request.args.get("id")
if not (request.args.get("status")):
lestatus = "null"
else:
lestatus = request.args.get("status")
if not (request.args.get("similarity")):
lesim = 0.8
else:
lesim = request.args.get("similarity")
#print("pasamos la validacion")
#print("insert into LogBuscaApi (FechaConsulta, IdCompañia, IdUsuario, Nombre, RFC, Similitud, Status) values (now(), (SELECT ID FROM Cuenta WHERE TOKEN = '{}' LIMIT 1), {}, '{}', '{}', {}, {})".format(request.args.get("token"), idUsuario, request.args.get("name"), request.args.get("rfc"), request.args.get("similarity"), lestatus))
def __match(data):
prohibidos = ["EL","LA", "LOS", "LAS", "UN", "UNO", "UNA", "UNOS", "UNAS", "SA", "S", "DE", "RL", "CV", "UC"];
#prohibidos = [];
matched_names = []; matched_aliases = []
for sname in sorted(data['name'].upper().split(' '),key=len)[-2:]:
tmp_f = f"tmp-{sname}-{int(time.time())}"
os.system("agrep -1 -e '%s' names > %s-n"%(sname,tmp_f))
os.system("agrep -1 -e '%s' aliases > %s-a"%(sname,tmp_f))
with open(f"{tmp_f}-n",'r') as tmp_ff:
for row in tmp_ff: matched_names.append(row[:-1])
with open(f"{tmp_f}-a",'r') as tmp_ff:
for row in tmp_ff: matched_aliases.append(row[:-1])
for sname in sorted(data['name'].replace(".","").upper().split(' '),key=len):
#print(sname);
sname2 = sname.replace("'","")
sname3 = sname.replace("'",".")
tmp_f = f"tmp-{sname2}-{int(time.time())}"
if(sname not in prohibidos):
print(sname);
#os.system("agrep -1 -e '%s' names > %s-n"%(sname,tmp_f))
#os.system("agrep -1 -e '%s' aliases > %s-a"%(sname,tmp_f))
#os.system("parallel agrep -1 -e '%s' ::: names.aa names.ab names.ac names.ad names.ae names.af names.ag names.ah > %s-n"%(sname,tmp_f))
#os.system("parallel agrep -1 -e '%s' ::: aliases > %s-a"%(sname,tmp_f))
os.system('cat names | parallel --pipe agrep -1 -e "%s" >> %s-n'%(sname3,tmp_f))
if(len(sname) > 3):
os.system('cat aliases | parallel --pipe agrep -3 -e "%s" >> %s-a'%(sname3,tmp_f))
else:
os.system('cat aliases | parallel --pipe agrep -1 -e "%s" >> %s-a'%(sname3,tmp_f))
# else:
# os.system("cat names | grep '%s' >> %s-n"%(sname,tmp_f))
# os.system("cat aliases | grep '%s' > %s-a"%(sname,tmp_f))
with open(f"{tmp_f}-n",'r') as tmp_ff:
for row in tmp_ff: matched_names.append(row[:-1].replace("'","''"))
with open(f"{tmp_f}-a",'r') as tmp_ff:
for row in tmp_ff: matched_aliases.append(row[:-1].replace("'","''"))
#print(matched_names)
os.remove(f"{tmp_f}-n"); os.remove(f"{tmp_f}-a")
os.system("rm tmp*")
db_connector = sqlite3.connect("/var/globalists/lists.db")
db_cursor = db_connector.cursor()
db_sentence = "SELECT substr(id,0,4) as list,nombre as name,alias,ubicacion as location,fechanac as birth_date,pais as nationality,rfc,programa as program,cargo as position,dependencia as department,fechapub as publication_date,estatus as status FROM lst WHERE "
#db_sentence = "select distinct nombre from lst;"
#db_cursor.execute(db_sentence)
#nombres_base = db_cursor.fetchall()
#for sname in sorted(data['name'].upper().split(' '),key=len)[-2:]:
#for nombre in nombres_base:
#print(os.system("echo '%s' | parallel --pipe --block 3M agrep -1 -e '%s'"%(nombre[0],sname)))
db_sentence = "SELECT REPLACE(substr(id,0,5), '-', '') as list,nombre as name,alias,ubicacion as location,fechanac as birth_date,pais as nationality,rfc,programa as program,cargo as position,dependencia as department,fechapub as publication_date,estatus as status FROM lst WHERE "
#nms = [nm for nm in matched_names if fuzz.token_set_ratio(data["name"].upper(),nm)>80]
#als = [nm for nm in matched_aliases if fuzz.token_set_ratio(data["name"].upper(),nm)>80]
nms = {nm:fuzz.token_set_ratio(data["name"].upper(),nm) for nm in matched_names}
als = {nm:fuzz.token_set_ratio(data["name"].upper(),nm) for nm in matched_aliases}
nms = {nm:nmp for nm,nmp in nms.items() if nmp>100*float(data["similarity"] or 0.8)}
als = {nm:nmp for nm,nmp in als.items() if nmp>100*float(data["similarity"] or 0.8)}
nms = {nm:fuzz.token_set_ratio(data["name"],nm.replace("''","'")) for nm in matched_names}
als = {nm:fuzz.token_set_ratio(data["name"],nm.replace("''","'")) for nm in matched_aliases}
nms = {nm:nmp for nm,nmp in nms.items() if nmp>=100*float(data["similarity"] or 0.8)}
als = {nm:nmp for nm,nmp in als.items() if nmp>=100*float(data["similarity"] or 0.8)}
#print(nms)
db_sentence+="( nombre IN ("+",".join([f"'{nm}'" for nm in nms])+")"
db_sentence+=" OR alias IN ("+",".join([f"'{nm}'" for nm in als])+") )"
db_sent_2 =" AND ".join([f"{fields[field]} LIKE '%{data[field]}%'" for field in fields if (data[field] and field!="name")])
db_sentence+=" AND "+db_sent_2+";" if db_sent_2 else ";"
print(db_sentence)
#print(db_sentence)
db_cursor.execute(db_sentence)
table = [{db_cursor.description[k][0]:row[k] for k in range(len(row))} for row in db_cursor.fetchall()]
for row in table:
row['name_similarity'] = nms.get(row['name'],0.0)/100.0
row['alias_similarity'] = als.get(row['alias'],0.0)/100.0
#print(table)
db_cursor.close(); db_connector.close()
#if(request.args.get("name").casefold() == 'ENRIQUE FRANCISCO GALINDO CEBALLOS'.casefold()):
#db_sentence = "SELECT REPLACE(substr(id,0,5), '-', '') as list,nombre as name,alias,ubicacion as location,fechanac as birth_date,pais as nationality,rfc,programa as program,cargo as position,dependencia as department,fechapub as publication_date,estatus as status FROM lst WHERE nombre = 'ENRIQUE FRANCISCO GALINDO CEBALLOS';"
#db_cursor.execute(db_sentence)
#table2 = [{db_cursor.description[k][0]:row[k] for k in range(len(row))} for row in db_cursor.fetchall()]
#print([db_cursor.description[k][0]:row[k] for k in range(len(row))] for row in db_cursor.fetchall())
#print("aqui empieza la otra tabla, ver que show")
#print(table)
global contador_resultados
for row in table:
if(row['name']):
row['name_similarity'] = nms.get(row['name'].replace("'","''"),0.0)/100.0
else:
row['name_similarity'] = nms.get(row['name'],0.0)/100.0
if(row['alias']):
row['alias_similarity'] = als.get(row['alias'].replace("'","''"),0.0)/100.0
else:
row['alias_similarity'] = als.get(row['alias'],0.0)/100.0
contador_resultados = contador_resultados + 1
#if(request.args.get("name").casefold() == 'ENRIQUE FRANCISCO GALINDO CEBALLOS'.casefold()):
#for row in table2:
#row['name_similarity'] = 1
#row['alias_similarity'] = als.get(row['alias'],0.0)/100.0
#for t in table2:
#table.append(t)
table.sort(reverse=True,key=myFunc);
#print(table)
response_queue.put(table)
thread = Process(target=__match,args=(data,),daemon=True)
thread.run()
#resultados = response_queue.get()
global contador_resultados
cur.execute("insert into LogBuscaApi (FechaConsulta, IdCompañia, IdUsuario, Nombre, RFC, Similitud, Status, Resultados) values (now(), (SELECT ID FROM Cuenta WHERE TOKEN = '{}' LIMIT 1), {}, '{}', '{}', {}, {}, {})".format(request.args.get("token"), idUsuario, request.args.get("name").replace("'","''"), request.args.get("rfc"), lesim, lestatus, contador_resultados))
print(contador_resultados)
contador_resultados = 0
db_connector.commit()
cur.close()
cur2.close
db_connector.close()
return jsonify({"success":True,"payload":response_queue.get()})
@app.route("/face_match",subdomain="api", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
def face_match():
fields = ["token","target","candidate"]
data = {field:request.args.get(field) for field in fields}
#@app.route("/face_match",subdomain="api", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
#def face_match():
# fields = ["token","target","candidate"]
# data = {field:request.args.get(field) for field in fields}
#if not all(request.args.get(field) for field in fields): return {"success":False,"error":"400 Bad Request"},400
if request.method != 'POST': return {"success":False,"error":"405 Method Not Allowed"},405
if request.args.get("token") != "7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT":
return {"success":False,"error":"403 Not authorized"},403 #abort(403)
target_f = request.files["target"]
candidate_f = request.files["candidate"]
# breakpoint()
target_f.save("target.jpg");candidate_f.save("target2.jpg")
target_enc = face_recognition.face_encodings(face_recognition.load_image_file(target_f))
candidate_enc = face_recognition.face_encodings(face_recognition.load_image_file(candidate_f))
if len(target_enc)==0 or len(candidate_enc)==0:
return jsonify({"success":False,"error":"No faces found"})
results = face_recognition.compare_faces(candidate_enc,target_enc[0])
return jsonify({"success":True,"payload":results[0]})
# if request.method != 'POST': return {"success":False,"error":"405 Method Not Allowed"},405
# if request.args.get("token") != "7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT":
# return {"success":False,"error":"403 Not authorized"},403 #abort(403)
# target_f = request.files["target"]
# candidate_f = request.files["candidate"]
# breakpoint() este estaba comentado
# target_f.save("target.jpg");candidate_f.save("target2.jpg")
# target_enc = face_recognition.face_encodings(face_recognition.load_image_file(target_f))
# candidate_enc = face_recognition.face_encodings(face_recognition.load_image_file(candidate_f))
# if len(target_enc)==0 or len(candidate_enc)==0:
# return jsonify({"success":False,"error":"No faces found"})
# results = face_recognition.compare_faces(candidate_enc,target_enc[0])
# return jsonify({"success":True,"payload":results[0]})
app.run(host="0.0.0.0",port=443,ssl_context=("./fullchain.pem","./privkey.pem"),debug=True)
#app.run(host="0.0.0.0",port=2443,ssl_context=("/etc/letsencrypt/live/condorgl.net/fullchain.pem","/etc/letsencrypt/live/condorgl.net/privkey.pem"),debug=True)
if __name__ == '__main__':
app.run(host="0.0.0.0",port=2443,debug=True)
#import wsgiserver
#server = wsgiserver.WSGIServer(app,host="0.0.0.0",port=5000,certfile='./fullchain.pem',keyfile='./privkey.pem')
#server.start()

View File

@ -1,132 +0,0 @@
#!/usr/bin/python3.7
import os
import csv
import json
import time
import sqlite3
import hashlib
import flask
from flask import Flask
from flask import request
from flask import jsonify
from flask import abort
from flask_cors import CORS
from fuzzywuzzy import fuzz
from multiprocessing import Process, Queue
import face_recognition
#from fset import fset
#from flask_security import auth_token_required
#from werkzeug.http import HTTP_STATUS_CODES
#def error_response(status_code, message=None):
# payload = {'error': HTTP_STATUS_CODES.get(status_code, 'Unknown error')}
# if message:
# payload['message'] = message
# response = jsonify(payload)
# response.status_code = status_code
# return response
#def tobs66(st):
# bs64=" 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
# acc=[(u'á','a'),(u'é','e',u'í','i'),(u'ó','o'),(u'ú','u'),(u'Á','A'),(u'É','E'),(u'Í','I'),(u'Ó','O'),(u'Ú','U'),('.',' '),(',',' '),(':',' '),(';',' '),('\n',' '),('\t',' '),('-',' '),('"',' '),("'",' ')]
# for r in acc: st=st.replace(r[0],r[1])
# return "".join(c for c in st if c in bs64 or c in [u'ñ',u'Ñ'])
#db_connector = sqlite3.connect("/var/lib/exp/praxis/lists.db")
#db_cursor = db_connector.cursor()
#db_sentence = "SELECT id,nombre,alias FROM lst ;"
#db_cursor.execute(db_sentence)
#names = fset((row[1] for row in db_cursor.fetchall()))
#names = [row for row in db_cursor.fetchall()]
#phph = lambda nnmm:nnmm.replace('LL',u'Ж').replace('RR',u'Р').replace('CH',u'Ч')
#names_ph = {nm[1]:phph(nm[1]) for nm in names}
#db_cursor.close(); db_connector.close()
app = Flask(__name__,subdomain_matching=True)
CORS(app)
#app.config['SECURITY_TOKEN_AUTHENTICATION_KEY'] = '7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT'
#print(app.config['SECURITY_TOKEN_AUTHENTICATION_HEADER'])
#print(app.config['SECURITY_TOKEN_AUTHENTICATION_KEY'])
app.config["SERVER_NAME"] = "condorgl.net"
@app.route("/")
def rootr(): return ""
@app.route("/login",subdomain="auth",methods=['POST'])
def login():
return jsonify({"success":request.form["username"] in ["aeespinosa","cobra"] and request.form["password"] in ["test"],"payload":{}})
@app.route("/",subdomain="globalists")
@app.route("/<path:wp>",subdomain="globalists")
def webapp(wp="index.html"): return app.send_static_file("globalists/"+wp+"index.html" if wp.endswith('/') else "globalists/"+wp)
@app.route("/",subdomain="mneural")
@app.route("/<path:wp>",subdomain="mneural")
def webapp2(wp="index.html"): return app.send_static_file("mneural/"+wp+"index.html" if wp.endswith('/') else "mneural/"+wp)
response_queue = Queue()
@app.route("/match",subdomain="api", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
#@auth_token_required
def match():
fields = {"name":"nombre","nationality":"pais","rfc":"rfc","status":"estatus"}
data = {field:request.args.get(field) for field in list(fields)+["similarity"]}
if not (request.args.get("token") and (request.args.get("name") or request.args.get("rfc"))): return {"success":False,"error":"400 Bad Request"},400
if request.method != 'GET': return {"success":False,"error":"405 Method Not Allowed"},405
if request.args.get("token") not in ["7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT","j6KbS9IVIdWReQkag3Own9XS1YGBCt4L2j070YonBV4T"]:
return {"success":False,"error":"403 Not authorized"},403
#print(data)
def __match(data):
matched_names = []; matched_aliases = []
for sname in sorted(data['name'].upper().split(' '),key=len)[-2:]:
tmp_f = f"tmp-{sname}-{int(time.time())}"
os.system("agrep -1 -e '%s' names > %s-n"%(sname,tmp_f))
os.system("agrep -1 -e '%s' aliases > %s-a"%(sname,tmp_f))
with open(f"{tmp_f}-n",'r') as tmp_ff:
for row in tmp_ff: matched_names.append(row[:-1])
with open(f"{tmp_f}-a",'r') as tmp_ff:
for row in tmp_ff: matched_aliases.append(row[:-1])
#print(matched_names)
os.remove(f"{tmp_f}-n"); os.remove(f"{tmp_f}-a")
db_connector = sqlite3.connect("/var/globalists/lists.db")
db_cursor = db_connector.cursor()
db_sentence = "SELECT substr(id,0,4) as list,nombre as name,alias,ubicacion as location,fechanac as birth_date,pais as nationality,rfc,programa as program,cargo as position,dependencia as department,fechapub as publication_date,estatus as status FROM lst WHERE "
#nms = [nm for nm in matched_names if fuzz.token_set_ratio(data["name"].upper(),nm)>80]
#als = [nm for nm in matched_aliases if fuzz.token_set_ratio(data["name"].upper(),nm)>80]
nms = {nm:fuzz.token_set_ratio(data["name"].upper(),nm) for nm in matched_names}
als = {nm:fuzz.token_set_ratio(data["name"].upper(),nm) for nm in matched_aliases}
nms = {nm:nmp for nm,nmp in nms.items() if nmp>100*float(data["similarity"] or 0.8)}
als = {nm:nmp for nm,nmp in als.items() if nmp>100*float(data["similarity"] or 0.8)}
#print(nms)
db_sentence+="( nombre IN ("+",".join([f"'{nm}'" for nm in nms])+")"
db_sentence+=" OR alias IN ("+",".join([f"'{nm}'" for nm in als])+") )"
db_sent_2 =" AND ".join([f"{fields[field]} LIKE '%{data[field]}%'" for field in fields if (data[field] and field!="name")])
db_sentence+=" AND "+db_sent_2+";" if db_sent_2 else ";"
print(db_sentence)
db_cursor.execute(db_sentence)
table = [{db_cursor.description[k][0]:row[k] for k in range(len(row))} for row in db_cursor.fetchall()]
for row in table:
row['name_similarity'] = nms.get(row['name'],0.0)/100.0
row['alias_similarity'] = als.get(row['alias'],0.0)/100.0
#print(table)
db_cursor.close(); db_connector.close()
response_queue.put(table)
thread = Process(target=__match,args=(data,),daemon=True)
thread.run()
return jsonify({"success":True,"payload":response_queue.get()})
@app.route("/face_match",subdomain="api", methods=['GET','POST','PUT','DELETE','TRACE','HEAD','OPTIONS'])
def face_match():
fields = ["token","target","candidate"]
data = {field:request.args.get(field) for field in fields}
#if not all(request.args.get(field) for field in fields): return {"success":False,"error":"400 Bad Request"},400
if request.method != 'POST': return {"success":False,"error":"405 Method Not Allowed"},405
if request.args.get("token") != "7bvij07Js7Da0ij5VzWTib6AOAv7J9kShu3HM3BTU3iT":
return {"success":False,"error":"403 Not authorized"},403 #abort(403)
target_f = request.files["target"]
candidate_f = request.files["candidate"]
# breakpoint()
target_f.save("target.jpg");candidate_f.save("target2.jpg")
target_enc = face_recognition.face_encodings(face_recognition.load_image_file(target_f))
candidate_enc = face_recognition.face_encodings(face_recognition.load_image_file(candidate_f))
if len(target_enc)==0 or len(candidate_enc)==0:
return jsonify({"success":False,"error":"No faces found"})
results = face_recognition.compare_faces(candidate_enc,target_enc[0])
return jsonify({"success":True,"payload":results[0]})
app.run(host="0.0.0.0",port=443,ssl_context=("./fullchain.pem","./privkey.pem"),debug=True)
#import wsgiserver
#server = wsgiserver.WSGIServer(app,host="0.0.0.0",port=5000,certfile='./fullchain.pem',keyfile='./privkey.pem')
#server.start()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 5.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 5.3 MiB